PHYSICAL / INORGANIC **CHEMISTRY**

Total Marks: 51

Max. Time: 54 min.

Topic: Coordination Compounds

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.4 Multiple choice objective ('-1' negative marking) Q.5 to Q.7 Subjective Questions ('-1' negative marking) Q.8 Comprehension ('-1' negative marking) Q.9 to Q.11

Match the Following (no negative marking) Q. 12

Assertion and Reason (no negative marking) Q. 13 to Q. 14

M.M., Min. (3 marks, 3 min.) [12, 12] (4 marks, 4 min.) [12, 12]

(4 marks, 5 min.) [4, 5]

(3 marks, 3 min.) [9, 9] [8, 10] (8 marks, 10 min.) (3 marks, 3 min.) [6, 6]

- 1. Which of the following is true:
 - (A) [Zn(Cl)₂ (NH₂)₂] will exist in cis and trans forms
 - (B) [Pt(Br) (Cl) (NH₂) (Py)] is an optically active compound
 - (C) The brown ring complex [Fe(H₂O)₅NO⁺]²⁺ is paramagnetic
 - (D) All the above are true
- 2. Which of the following is true about the complex [PtCl₂(NH₂)(OH₂)]; [Atomic no. of Pt = 78]
 - (i) It will have two geometrical isomeric forms, cis and trans
- (ii) The hybridisation state of Pt(II) is sp³

(iii) It is a square planar complex

(iv) It is a diamagnetic complex (vi) It is a tetrahedral complex

- (v) It can show hydrate isomerism
- (A) (i), (iii),(iv)
- (B) (ii),(iv),(v)
- (C) (ii),(v),(vi)
- (D) (i),(v),(vi)
- 3. The octahedral complex [Rh(NO₂) (SCN) (en)₂]⁺ can exist in a total number of isomeric forms including stereoisomers:
 - (A) 2
- (B) 4
- (C) 8
- (D) 12
- Total number of geometrical isomers of Ma, b, type of octahedral complex are 4.
- (B) four
- (C) Six
- (D) Zero

Which of the following ions are optically active? 5.

(B) II

(C) III

(D) IV

- 6. Which is/are correct statement (s)?
 - (A) [Co(en)₂] [Cr(CN)₃] will display coordination isomerism.
 - (B) [Mn(CO)₅(SCN)] will display linkage isomerism.
 - (C) [Co(NH₃)₅(NO₃)]SO₄ will display ionisation isomerism
 - (D) None is correct.
- 7. The compound Na, IrCl, reacts with triphenylphosphine in diethyleneglycol in an atmosphere of CO to give [IrCl(CO)(PPh₂)₂], known as 'Vaska's compound'.(Atomic number of Ir = 77)

Which of the following statements is /are correct?

- (A) The IUPAC name of the complex is carbonylchloridobis(triphenylphosphine)iridium(I).
- (B) The hybridisation of the metal ion is sp³.
- (C) The magnetic moment (spin only) of the complex is zero.
- (D) The complex shows geometrical as well as ionization isomerism.

Write a series of equations to show the stepwise displacement of H_2O ligands in $[Fe(H_2O)_6]^{3+}$ by ethylene-diamine (en) for which $\log K_1 = 4.44$; $\log K_2 = 3.41$ and $\log K_3 = 2.15$. What is overall formation constant for the complex $[Fe(en)_a]^{3+}$?

Comprehension # (Q. 9 to Q.11)

A research-guide instructed his two students to synthesize complex $[Co(NH_2)_{\epsilon}(NO_2)]CI_2$

They synthesised the complexes with identical molecular formula, molar mass, geometry, conductance and spin, but they differed in colour. Based on the above facts answer the following questions.

- **9.** The difference in colour is due to :
 - (A) optical isomerism(C) linkage isomerism

- (B) geometrical isomerism
- (D) nuclear isomerism
- 10. Which of the ligands can show ambident property?
 - (A) NO₂-
- (B) NH_a
- (C) H₂O
- (D) CO₃2-

- 11. Complexes synthesized can be:
 - (A) $[Co(NH_3)_5(NO_3)]CI_3$

(B) $[Co(NH_2)_{\epsilon}(ONO)]CI_2$

(C) $[C_0(NH_3)_5Cl_2]NO_2$

(D) (A) & (B) both.

12. Column – I

(A)

- [Cr(NH₃)_e]³⁺
- (B) $[Co(en)_{3}]^{3+}$
- (C) $[Co(NO_2)_6]^{4-}$
- (D) $[Co(H_2O)_e^2]^{2+}$

- **Column II** (p) d²sp³
- (q) CFSE = $-1.2 \Delta_0$
- (r) Paramagnetic
- (s) sp^3d^2
- 13. Statement-1: Tetrahedral complexes do not show geometrical isomerism

Statement-2: All the bond angles in tetrahedral geometry are 109°.28'.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- (E) Statement-1 is False, Statement-2 is False
- **14.** Statement-1: Out of $[NiF_e]^{4-}$ and $[NiF_e]^{2-}$ one can be high spin complex and other a low spin complex.

Statement-2: F- is a weak field ligand.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

Answer Key

DPP No. #10

- 1. C
- 2.
- Α
- 3. D
- 4.
- 5.

BC

- ABC
- 7.
- nari: ID al: IC ad: II
- ٥.

C

10. A

- 11.
- U
- 12
- [A p,q,r]; [B p]; [C p,r]; [D s,r]
- 13.
- 4. B

 $K_{s} = 10^{10}$.

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #10

- (A) is tetrahedral. So, No G.I.
 - (B) is square planar [Pt(II) complex]. So, No optical isomerism
 - (C) is Fe(I) complex, contains three unpaired e-s.
- Pt(II) is 5d⁸, forms square planar complex which is diamagnetic. [PtCl₂(NH₃)(OH₂)] will show geometrical isomerism.

- 4.
- a a a
- a a b
- I and IV have POS.
- (A) Both cation & anion are complex.
 - (B) SCN- is ambidentate ligand. So, linkage isomerism.
 - (C) Anion are acting as ligand. So, it can show ionization isomerism.
- (A) [IrCl(CO)(PPh₃)₂] carbonylchloridobis(triphenylphosphine)iridium(I).
 - (B) Coordination number of Ir is four. Ir is in (+1) oxidation state with 4d^e configuration. It is trans isomer, so its geometry should be square planar.

(C) All electrons are paired; so magnetic moment is zero.

The complex has plane of symmetry, so it does not show optical isomerism.

8.
$$\begin{aligned} & [\text{Fe}(\text{H}_2\text{O})_{\text{e}}]^{3+} + \text{en} & \rightarrow [\text{Fe}(\text{H}_2\text{O})_{\text{e}}\text{en}]^{3+} & \text{K}_{\text{eq}} = \text{K}_1 \\ & [\text{Fe}(\text{H}_2\text{O})_{\text{e}}\text{en}]^{3+} + \text{en} & \rightarrow [\text{Fe}(\text{H}_2\text{O})_{\text{e}}(\text{en})_{\text{e}}]^{3+} & \text{K}_{\text{eq}} = \text{K}_2 \\ & [\text{Fe}(\text{H}_2\text{O})_{\text{e}}(\text{en})_{\text{e}}]^{3+} + \text{en} & \rightarrow [\text{Fe}(\text{en})_{\text{e}}]^{3+} & \text{K}_{\text{eq}} = \text{K}_3 \\ & [\text{Fe}(\text{H}_2\text{O})_{\text{e}}]^{3+} + 3\text{en} & \rightarrow [\text{Fe}(\text{en})_{\text{e}}]^{3+} & \text{K}_{\text{eq}} = \text{K}_1 \times \text{K}_2 \times \text{K}_3 \\ & \log \text{K}_1 = \log \text{K}_1 + \log \text{K}_2 + \log \text{K}_3 \\ & = 4.44 + .41 + 2.15 = 10 & \Rightarrow \text{K}_1 = 10^{10} \end{aligned}$$

- [Co(NH₃)₅(NO₂)]Cl₂
 [Co(NH₃)₅(ONO)]Cl₂ have different color
- In this, donor atom can be 'N' or 'O' i.e. NO,-, ONO-
- 11. NO,-, ONO- are ambidentate ligands.
- 12. (A) $[Cr(NH_3)_6]^{3+}$ $Cr^{3+} \longrightarrow 3d^3, 4s^0$

(B) $[Co(en)_3]^{3+}$ $Co^{3+} \longrightarrow 3d^6$, $4s^6$ en is a SFL. so, pairing will take place.

CFSE =
$$6 \times (-0.4 \Delta_0) + 2p = -1.2 \Delta_0 + 2p$$

(C) $[Co(NO_2)_6]^{4-}$ $Co^{2+} \longrightarrow 3d^7, 4s^0$

NO, is a SFL, so, pairing will take place and 1 electron is promoted to higher d-orbitals

- 13. In Tetrahedral All bond angle are 109°.28' So It is symmetrical
- 14. [NiF_g]⁴⁻ F⁻ is a weak ligand, so high spin complex with two unpaired electron.
 [NiF_g]²⁻ Low spin complex even with weak field ligands. On d⁶ arrangment with +4 oxidation state will have higher CFSE leading to pairing of electrons and complex will be diamagnetic.